International Transactions on Electrical Energy Systems (Jan 2024)

Multiobjective Neuro-Fuzzy Controller Design and Selection of Filter Parameters of UPQC Using Predator Prey Firefly and Enhanced Harmony Search Optimization

  • Koganti Srilakshmi,
  • Gummadi Srinivasa Rao,
  • Katragadda Swarnasri,
  • Sai Ram Inkollu,
  • Krishnaveni Kondreddi,
  • Praveen Kumar Balachandran,
  • C. Dhanamjayulu,
  • Baseem Khan

DOI
https://doi.org/10.1155/2024/6611240
Journal volume & issue
Vol. 2024

Abstract

Read online

This research introduces a unified power quality conditioner (UPQC) that integrates solar photovoltaic (PV) system and battery energy systems (SBES) to address power quality (PQ) issues. The reference signals for voltage source converters of UPQC are produced by the Levenberg–Marquardt back propagation (LMBP) trained artificial neural network control (ANNC). This method removes the necessity for conventional dq0, abc complex shifting. Moreover, the optimal choice of parameters for the adaptive neuro-fuzzy inference system (ANFIS) was achieved through the integration of the enhanced harmony search algorithm (EHSA) and the predator-prey-based firefly algorithm (PPFA) in the form of the hybrid metaheuristic algorithm (PPF-EHSA). In addition, the algorithm is employed to optimize the selection of resistance and inductance values for the filters in UPQC. The primary objective of the ANNC with predator-prey-based firefly algorithm and enhanced harmony search algorithm (PPF-EHSA) is to enhance the stability of the DC-link capacitor voltage (DLCV) with reduced settling time amid changes in load, solar irradiation (G), and temperature (T). Moreover, the algorithm seeks to achieve a reduction in total harmonic distortion (THD) and enhance power factor (PF). The method also focuses on mitigating fluctuations such as swell, harmonics, and sag and also unbalances at the grid voltage. The proposed approach is examined through four distinct cases involving various permutations of loads and sun irradiation (G). However, in order to demonstrate the performance of the suggested approach, a comparison is conducted with the ant colony and genetic algorithms, i.e., (ACA) (GA), as well as the standard methods of synchronous reference frame (SRF) and instantaneous active and reactive power theory (p-q). The results clearly demonstrate that the proposed method exhibits a reduced mean square error (MSE) of 0.02107 and a lower total harmonic distortion (THD) of 2.06% compared to alternative methods.