RNA-Dependent Intergenerational Inheritance of Enhanced Synaptic Plasticity after Environmental Enrichment
Eva Benito,
Cemil Kerimoglu,
Binu Ramachandran,
Tonatiuh Pena-Centeno,
Gaurav Jain,
Roman Manuel Stilling,
Md Rezaul Islam,
Vincenzo Capece,
Qihui Zhou,
Dieter Edbauer,
Camin Dean,
André Fischer
Affiliations
Eva Benito
Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, von Siebold Strasse 3A, 37075 Göttingen, Germany
Cemil Kerimoglu
Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, von Siebold Strasse 3A, 37075 Göttingen, Germany
Binu Ramachandran
Trans-synaptic Signaling Group, European Neuroscience Institute, Grisebachstrasse 5, 37077 Göttingen, Germany
Tonatiuh Pena-Centeno
Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, von Siebold Strasse 3A, 37075 Göttingen, Germany; Bioinformatics Unit, German Center for Neurodegenerative Diseases (DZNE) Göttingen, von Siebold Strasse 3A, 37075 Göttingen, Germany
Gaurav Jain
Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, von Siebold Strasse 3A, 37075 Göttingen, Germany; Bioinformatics Unit, German Center for Neurodegenerative Diseases (DZNE) Göttingen, von Siebold Strasse 3A, 37075 Göttingen, Germany
Roman Manuel Stilling
Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, von Siebold Strasse 3A, 37075 Göttingen, Germany
Md Rezaul Islam
Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, von Siebold Strasse 3A, 37075 Göttingen, Germany
Vincenzo Capece
Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, von Siebold Strasse 3A, 37075 Göttingen, Germany; Bioinformatics Unit, German Center for Neurodegenerative Diseases (DZNE) Göttingen, von Siebold Strasse 3A, 37075 Göttingen, Germany
Qihui Zhou
German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor Lynen Strasse 17, 81377 Munich, Germany
Dieter Edbauer
German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor Lynen Strasse 17, 81377 Munich, Germany
Camin Dean
Trans-synaptic Signaling Group, European Neuroscience Institute, Grisebachstrasse 5, 37077 Göttingen, Germany
André Fischer
Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, von Siebold Strasse 3A, 37075 Göttingen, Germany; Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von Siebold Strasse 5, 37075 Göttingen, Germany; Corresponding author
Summary: Physical exercise in combination with cognitive training is known to enhance synaptic plasticity, learning, and memory and lower the risk for various complex diseases including Alzheimer’s disease. Here, we show that exposure of adult male mice to an environmental enrichment paradigm leads to enhancement of synaptic plasticity and cognition also in the next generation. We show that this effect is mediated through sperm RNA and especially miRs 212/132. In conclusion, our study reports intergenerational inheritance of an acquired cognitive benefit and points to specific miRs as candidates mechanistically involved in this type of transmission. : Environmental enrichment (EE), a combination of physical and mental exercise, has been shown to increase cognitive abilities in mice and in humans. Benito et al. find that offspring of male mice subjected to EE also show this increase. This effect is dependent on sperm RNA and involves microRNA212/132. Keywords: epigenetics, brain, microRNA, memory, intergenerational, transgenerational, exercise, environmental enrichment, cognition