Metals (Sep 2022)

Constitutive Equation and Characterization of the Nickel-Based Alloy 825

  • Hui Xu,
  • Yugui Li,
  • Huaying Li,
  • Jinbin Wang,
  • Guangming Liu,
  • Yaohui Song

DOI
https://doi.org/10.3390/met12091496
Journal volume & issue
Vol. 12, no. 9
p. 1496

Abstract

Read online

In this contribution, a series of isothermal compression tests for the 825 nickel-based alloy were performed using a Gleeble-3800 computer-controlled thermomechanical simulator at the compression temperature range of 850 °C to 1150 °C and the strain rate range of 0.14 s−1 to 2.72 s−1. The hot deformation equation of the alloy is derived from the piecewise model based on the theory of work hardening-dynamic recovery and dynamic recrystallization (DRX), respectively. Comparisons between the predicted and experimental data indicate that the proposed constitutive model had a highly accurate prediction. The deformation rate and temperature effect were associated with microstructural change, and the evolution of the microstructure was analyzed through electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). The dislocation densities of the alloy at the deformation of 850 °C and 2.72 s−1 is higher than at the other deformation, the higher dislocation density is the higher stored energy and the higher degree of DRX. As well, two types of DRX nucleation mechanisms have been identified: discontinuous dynamic recrystallization (DDRX) and continuous dynamic recrystallization (CDRX). Changes in grain boundary have significant effect on the DRX nucleation of the alloy, twin boundaries act as potential barriers limiting dislocation slip and motion and eventually leading to the accumulation of dislocation during plastic deformation. This study identified that the major contribution which results in the growth of new twins in DRX grains is the new boundary of Σ3 twins.

Keywords