Applied Sciences (Oct 2024)
A Comprehensive Hybrid Deep Learning Approach for Accurate Status Predicting of Hydropower Units
Abstract
Hydropower units are integral to sustainable energy production, and their operational reliability hinges on accurate status prediction. This paper introduces an innovative hybrid deep learning model that synergistically integrates a Temporal Convolutional Network (TCN), a Residual Short-Term LSTM (REST-LSTM) network, a Gated Recurrent Unit (GRU) network, and the tuna swarm optimization (TSO) algorithm. The model was meticulously designed to capture and utilize temporal features inherent in time series data, thereby enhancing predictive performance. Specifically, the TCN effectively extracts critical temporal features, while the REST-LSTM, with its residual connections, improves the retention of short-term memory in sequence data. The parallel incorporation of GRU further refines temporal dynamics, ensuring comprehensive feature capture. The TSO algorithm was employed to optimize the model’s parameters, leading to superior performance. The model’s efficacy was empirically validated using three datasets—unit flow rate, guide vane opening, and maximum guide vane water temperature—sourced from the Huadian Electric Power Research Institute. The experimental results demonstrate that the proposed model significantly reduces both the maximum and average prediction errors, while also offering substantial improvements in forecasting accuracy compared with the existing methodologies. This research presents a robust framework for hydropower unit operation prediction, advancing the application of deep learning in the hydropower sector.
Keywords