Frontiers in Bioengineering and Biotechnology (Aug 2022)

Monitoring weekly progress of front crawl swimmers using IMU-based performance evaluation goal metrics

  • Mahdi Hamidi Rad,
  • Vincent Gremeaux,
  • Vincent Gremeaux,
  • Fabien Massé,
  • Farzin Dadashi,
  • Kamiar Aminian

DOI
https://doi.org/10.3389/fbioe.2022.910798
Journal volume & issue
Vol. 10

Abstract

Read online

Technical evaluation of swimming performance is an essential factor in preparing elite swimmers for their competitions. Inertial measurement units (IMUs) have attracted much attention recently because they can provide coaches with a detailed analysis of swimmers’ performance during training. A coach can obtain a quantitative and objective evaluation from IMU. The purpose of this study was to validate the use of a new phase-based performance assessment with a single IMU worn on the sacrum during training sessions. Sixteen competitive swimmers performed five one-way front crawl trials at their maximum speed wearing an IMU on the sacrum. The coach recorded the lap time for each trial, as it remains the gold standard for swimmer’s performance in competition. The measurement was carried out once a week for 10 consecutive weeks to monitor the improvement in the swimmers’ performance. Meaningful progress was defined as a time decrease of at least 0.5 s over a 25 m lap. Using validated algorithms, we estimated five goal metrics from the IMU signals representing the swimmer’s performance in the swimming phases (wall push-off, glide, stroke preparation, free-swimming) and in the entire lap. The results showed that the goal metrics for free-swimming phase and the entire lap predicted the swimmer’s progress well (e.g., accuracy, precision, sensitivity, and specificity of 0.91, 0.89, 0.94, and 0.95 for the lap goal metric, respectively). As the goal metrics for initial phases (wall push-off, glide, stroke preparation) achieved high precision and specificity (≥0.79) in progress detection, the coach can use them for swimmers with satisfactory free-swimming phase performance and make further improvements in initial phases. Changes in the values of the goal metrics have been shown to be correlated with changes in lap time when there is meaningful progress. The results of this study show that goal metrics provided by the phase-based performance evaluation with a single IMU can help monitoring swimming progress. Average velocity of the lap can replace traditional lap time measurement, while phase-based goal metrics provide more information about the swimmer’s performance in each phase. This evaluation can help the coach quantitatively monitor the swimmer’s performance and train them more efficiently.

Keywords