Frontiers in Physics (Jan 2023)

Image encryption scheme based on a controlled zigzag transform and bit-level encryption under the quantum walk

  • Tian Zhang,
  • Shumei Wang

DOI
https://doi.org/10.3389/fphy.2022.1097754
Journal volume & issue
Vol. 10

Abstract

Read online

With the rapid development of science and technology and network technology, the study of information security has become a hot spot, and image encryption has potential value in this regard. In this paper, an image encryption scheme based on controlled zigzag transform and bit-level encryption under the quantum walk environment is proposed. First, the parameters of the alternating quantum walk are obtained using the SHA-256 method, and the probability matrix of the quantum distribution on the two-dimensional lattice is obtained by multiple walk measurements; second, the spatial dislocation and bit-level dislocation of the image are realized by performing controlled zigzag dislocation and three-dimensional tesseract-like rotational dislocation on the color image; finally, after preprocessing the probability matrix of the quantum distribution, the matrix is bitwise with the dislocated image to achieve the encryption protection of image information. The effectiveness of the encryption scheme is verified by simulation experiments, and the scheme has a significant encryption effect. Compared with other encryption schemes, this scheme has better key sensitivity and dislocation effect, which provides a new approach to the field of image quantum encryption.

Keywords