Chemosensors (Dec 2021)

Structural and Electrochemical Studies of Cobalt(II) and Nickel(II) Coordination Polymers with 6-Oxonicotinate and 4,4′-Bipyridine

  • Ivana Škugor Rončević,
  • Nives Vladislavić,
  • Nabanita Chatterjee,
  • Vesna Sokol,
  • Clive L. Oliver,
  • Boris-Marko Kukovec

DOI
https://doi.org/10.3390/chemosensors9120352
Journal volume & issue
Vol. 9, no. 12
p. 352

Abstract

Read online

The 6-oxonicotinate (6-Onic) salts of a one-dimensional cationic cobalt(II) or nickel(II) coordination polymers with 4,4′-bipyridine (4,4′-bpy), namely {[Co(4,4′-bpy)(H2O)4](6-Onic)2·2H2O}n (1) and {[Ni(4,4′-bpy)(H2O)4](6-Onic)2·2H2O}n (2), were prepared hydrothermally by reactions of cobalt(II) nitrate hexahydrate or nickel(II) nitrate hexahydrate, respectively, 6-hydroxynicotinic acid and 4,4′-bipyridine in a mixture of ethanol and water. In the hydrogen-bonded frameworks of 1 and 2, the one-dimensional polymeric chains of {[M(4,4′-bpy)(H2O)4]2+}n (M = Co, Ni), the 6-oxonicotinate anions and the lattice water molecules were assembled via strong intermolecular O–H···O and N–H···O hydrogen bonds and π–π interactions, leading to the formation of the representative hydrogen-bond ring motifs: trimeric R23(10) motif, the centrosymmetric tetrameric R24(8) and R24(12) motifs and the pentameric R45(12) motif. The isostructural coordination polymers 1 and 2 exhibited a different electrochemical behavior, as observed by cyclic voltammetry, which can be attributed to the nature of the metal ions (cobalt(II) vs. nickel(II)).

Keywords