Nanoscale Research Letters (May 2017)
Bright Single-Photon Source at 1.3 μm Based on InAs Bilayer Quantum Dot in Micropillar
Abstract
Abstract A pronounced high count rate of single-photon emission at the wavelength of 1.3 μm that is capable of fiber-based quantum communication from InAs/GaAs bilayer quantum dots coupled with a micropillar (diameter ~3 μm) cavity of distributed Bragg reflectors was investigated, whose photon extraction efficiency has achieved 3.3%. Cavity mode and Purcell enhancement have been observed clearly in microphotoluminescence spectra. At the detection end of Hanbury-Brown and Twiss setup, the two avalanched single-photon counting modules record a total count rate of ~62,000/s; the time coincidence counting measurement demonstrates single-photon emission, with the multi-photon emission possibility, i.e., g 2(0), of only 0.14.
Keywords