Brazilian Journal of Radiation Sciences (Feb 2021)

ANALYTICAL SIMULATION OF A PWR USING MELCOR

  • Maritza Rodríguez Gual,
  • Nathalia N. Araújo,
  • Marcos C. Maturana

DOI
https://doi.org/10.15392/bjrs.v8i3A.1357
Journal volume & issue
Vol. 8, no. 3A

Abstract

Read online

After the two most significant nuclear accidents in history – the Chernobyl Reactor Four explosion in Ukraine (1986) and the Fukushima Daiichi accident in Japan (2011) –, the Final Safety Analysis Report (FSAR) included a new chapter (19) dedicated to the Probabilistic Safety Assessment (PSA) and Severe Accident Analysis (SAA), covering accidents with core melting. FSAR is the most important document for licensing of siting, construction, commissioning and operation of a nuclear power plant. In the USA, the elaboration of the FSAR chapter 19 is according to the review and acceptance criteria described in the NUREG-0800 and U.S. Nuclear Regulatory Commission (NRC) Regulatory Guide (RG) 1.200. The same approach is being adopted in Brazil by National Nuclear Energy Commission (CNEN). Therefore, the FSAR elaboration requires a detailed knowledge of severe accident phenomena and an analysis of the design vulnerabilities to the severe accidents, as provided in a PSA – e.g., the identification of the initiating events involving significant Core Damage Frequency (CDF) are made in the PSA Level 1. As part of the design and certification activities of a plant of reference, the Laboratory of Risk Analysis, Evaluating and Management (LabRisco), located in the University of São Paulo (USP), Brazil, has been preparing a group of specialists to model the progression of severe accidents in Pressurized Water Reactors (PWR), to support the CNEN regulatory expectation – since Brazilian Nuclear Power Plants (NPP), i.e., Angra 1, 2 and 3, have PWR type, the efforts of the CNEN are concentrated on accidents at this type of reactor. The initial investigation objectives were on completing the detailed input data for a PWR cooling system model using the U.S. NRC MELCOR 2.2 code, and on the study of the reference plant equipment behavior – by comparing this model results and the reference plant normal operation main parameters, as modeled with RELAP5/MOD2 code.

Keywords