Nature Communications (Apr 2022)

Nonlinear wave evolution with data-driven breaking

  • D. Eeltink,
  • H. Branger,
  • C. Luneau,
  • Y. He,
  • A. Chabchoub,
  • J. Kasparian,
  • T. S. van den Bremer,
  • T. P. Sapsis

DOI
https://doi.org/10.1038/s41467-022-30025-z
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 11

Abstract

Read online

Wave breaking mechanisms relevant for modelling of ocean-atmosphere interaction and rogue waves, remain computationally challenging. The authors propose a machine learning framework for prediction of breaking and its effects on wave evolution that can be applied for forecasting of real world sea states.