IEEE Access (Jan 2020)

Modeling, Simulation and Experimental Verification of Four-Phase 8/6 Switched Reluctance Motor Considering Interactive Excitation

  • Yueying Zhu,
  • Yitao Jia,
  • Hao Wu

DOI
https://doi.org/10.1109/ACCESS.2020.2986952
Journal volume & issue
Vol. 8
pp. 70411 – 70419

Abstract

Read online

In the single-phase excitation mode of a four-phase 8/6 switched reluctance motor (SRM), the switch angle for each phase is usually high enough to improve the performance of the SRM, which can directly result in overlapping in excitation periods of each adjacent phase. Ignoring the torque variation caused by magnetic coupling between adjacent charged phases during excitation overlap period, which is a general method to establish the model of SRM currently, would greatly influence the accuracy of the simulation model. Aiming at the problem of the general modeling method, a new SRM ontology modeling method is proposed by considering overlapping excitation, based on nonlinear mathematical model established by means of mutual inductance which could influence the electromagnetic characteristics of SRM. Firstly, the reason of interactive excitation and the distribution of the magnetic field are analyzed by (FEM), and the mathematical model is also developed. Then, the detailed static characteristics including mutual inductance and torque are analyzed based on the results of FEM, which are compared with those of the model without considering the effects of interactive excitation. Furthermore, the dynamic simulation model of SRM drive system (SRD) is built, and the simulation results are analyzed and compared with those of the traditional model. Finally, a static experiment is designed and performed to verify the mutual inductance and static torque under long magnetic circuit (LMC) and short magnetic circuit (SMC) in interactive excitation. The comparison results show that the data from experiment are greatly consistent with those from FEM, and the characteristics of mutual inductance and torque under interactive excitation should be considered when establishing the model of SRM.

Keywords