Enhancing visual motion discrimination by desynchronizing bifocal oscillatory activity
Roberto F. SALAMANCA-GIRON,
Estelle RAFFIN,
Sarah B. ZANDVLIET,
Martin SEEBER,
Christoph M. MICHEL,
Paul SAUSENG,
Krystel R. HUXLIN,
Friedhelm C. HUMMEL
Affiliations
Roberto F. SALAMANCA-GIRON
Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Campus Biotech, Room H4.3.132.084, Chemin des Mines 9, Geneva, Switzerland; Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Clinique Romande de Readaptation (CRR), EPFL Valais, Sion, Switzerland
Estelle RAFFIN
Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Campus Biotech, Room H4.3.132.084, Chemin des Mines 9, Geneva, Switzerland; Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Clinique Romande de Readaptation (CRR), EPFL Valais, Sion, Switzerland
Sarah B. ZANDVLIET
Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Campus Biotech, Room H4.3.132.084, Chemin des Mines 9, Geneva, Switzerland; Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Clinique Romande de Readaptation (CRR), EPFL Valais, Sion, Switzerland
Martin SEEBER
Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland
Christoph M. MICHEL
Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland; Lemanic Biomedical Imaging Centre (CIBM), Lausanne, Geneva, Switzerland
Paul SAUSENG
Department of Psychology, LMU Munich, Leopoldstr. 13, Munich 80802, Germany
Krystel R. HUXLIN
The Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, NY, USA
Friedhelm C. HUMMEL
Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Campus Biotech, Room H4.3.132.084, Chemin des Mines 9, Geneva, Switzerland; Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Clinique Romande de Readaptation (CRR), EPFL Valais, Sion, Switzerland; Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland; Corresponding author at: Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Campus Biotech, Room H4.3.132.084, Chemin des Mines 9, Geneva, Switzerland.
Visual motion discrimination involves reciprocal interactions in the alpha band between the primary visual cortex (V1) and mediotemporal areas (V5/MT). We investigated whether modulating alpha phase synchronization using individualized multisite transcranial alternating current stimulation (tACS) over V5 and V1 regions would improve motion discrimination. We tested 3 groups of healthy subjects with the following conditions: (1) individualized In-Phase V1alpha-V5alpha tACS (0° lag), (2) individualized Anti-Phase V1alpha-V5alpha tACS (180° lag) and (3) sham tACS. Motion discrimination and EEG activity were recorded before, during and after tACS. Performance significantly improved in the Anti-Phase group compared to the In-Phase group 10 and 30 min after stimulation. This result was explained by decreases in bottom-up alpha-V1 gamma-V5 phase-amplitude coupling. One possible explanation of these results is that Anti-Phase V1alpha-V5alpha tACS might impose an optimal phase lag between stimulation sites due to the inherent speed of wave propagation, hereby supporting optimized neuronal communication.