Advanced Science (Feb 2022)

3D‐Printed Strong Dental Crown with Multi‐Scale Ordered Architecture, High‐Precision, and Bioactivity

  • Menglu Zhao,
  • Danlei Yang,
  • Suna Fan,
  • Xiang Yao,
  • Jiexin Wang,
  • Meifang Zhu,
  • Yaopeng Zhang

DOI
https://doi.org/10.1002/advs.202104001
Journal volume & issue
Vol. 9, no. 5
pp. n/a – n/a

Abstract

Read online

Abstract Mimicking the multi‐scale highly ordered hydroxyapatite (HAp) nanocrystal structure of the natural tooth enamel remains a great challenge. Herein, a bottom‐up step‐by‐step strategy is developed using extrusion‐based 3D printing technology to achieve a high‐precision dental crown with multi‐scale highly ordered HAp structure. In this study, hybrid resin‐based composites (RBCs) with “supergravity +” HAp nanorods can be printed smoothly via direct ink writing (DIW) 3D printing, induced by shear force through a custom‐built nozzle with a gradually shrinking channel. The theoretical simulation results of finite element method are consistent with the experimental results. The HAp nanorods are first highly oriented along a programmable printing direction in a single printed fiber, then arranged in a layer by adjusting the printing path, and finally 3D printed into a highly ordered and complex crown structure. The printed samples with criss‐crossed layers by interrupting crack propagation exhibit a flexural strength of 134.1 ± 3.9 MPa and a compressive strength of 361.6 ± 8.9 MPa, which are superior to the corresponding values of traditional molding counterparts. The HAp‐monodispersed RBCs are successfully used to print strong and bioactive dental crowns with a printing accuracy of 95%. This new approach can help provide customized components for the clinical restoration of teeth.

Keywords