Remote Sensing (Nov 2021)
Local Climate Zones and Thermal Characteristics in Riyadh City, Saudi Arabia
Abstract
Using the local climate zone (LCZ) framework and multiple Earth observation input features, an LCZ classification was developed and established for Riyadh City in 2017. Four land-cover-type and four urban-type LCZs were identified in the city with an overall accuracy of 87%. The bare soil/sand (LCZ-F) class was found to be the largest LCZ class, which was within the nature of arid climate cities. Other land-cover LCZs had a lower coverage percentage (each class with <7%). The compact low-rise (LCZ-3) class was the largest urban type, as urban development in arid climate cities tends to extend horizontally. The daytime surface thermal characteristics of the developed LCZs were analyzed at seasonal timescales using land surface temperature (LST) estimated from multiple Landsat 8 satellite images (June 2017–May 2018). The highest daytime mean LST was found over large low-rise (LCZ-8) class areas throughout the year. This class was the only urban-type LCZ class that demonstrated a positive LST departure from the overall mean LST across seasons. Other urban-type LCZ classes showed lower LSTs and negative deviations from the overall mean LSTs. The overall thermal results suggested the presence of the surface urban heat island sink phenomenon as urban areas experienced lower LSTs than their surroundings. Thermal results demonstrated that the magnitudes of LST differences among LCZs were considerably dependent on the way the region of interest/analysis was defined. This was related to the types of LCZ classes presented in the study area and the spatial distribution and abundance of these LCZ classes. The developed LCZ classification and thermal results have several potential applications in different areas including planning and urban design strategies and urban health-related studies.
Keywords