Applied Sciences (Oct 2021)
Three-Dimensional Ultrasonic Imaging and Acoustic Emission Monitoring of Hydraulic Fractures in Tight Sandstone
Abstract
Hydraulic fracturing is an important means for the development of tight oil and gas reservoirs. Laboratory rock mechanics experiments can be used to better understand the mechanism of hydraulic fracture. Therefore, in this study we carried out hydraulic fracturing experiments on Triassic Yanchang Formation tight sandstone from the Ordos Basin, China. Sparse tomography was used to obtain ultrasonic velocity images of the sample during hydraulic fracturing. Then, combining the changes in rock mechanics parameters, acoustic emission activities, and their spatial position, we analyzed the hydraulic fracturing process of tight sandstone under high differential stress in detail. The experimental results illuminate the fracture evolution processes of hydraulic fracturing. The competition between stress-induced dilatancy and fluid flow was observed during water injection. Moreover, the results prove that the “seismic pump” mode occurs in the dry region, while the “dilation hardening” and “seismic pump” modes occur simultaneously in the partially saturated region; that is to say, the hydraulic conditions dominate the failure mode of the rock.
Keywords