Chemosensors (May 2022)

A Laser-Induced Photoelectrochemical Sensor for Natural Sweat Cu<sup>2</sup><sup>+</sup> Detection

  • Shubo Zhang,
  • Yanwen Liu,
  • Juan Wang,
  • Zhihong Liu

DOI
https://doi.org/10.3390/chemosensors10050169
Journal volume & issue
Vol. 10, no. 5
p. 169

Abstract

Read online

Tracking fluctuations in the Cu2+ level in sweat is meaningful for non-invasive and real-time assessment of Cu2+-abnormality-related diseases and provides important diagnostic information. However, the user-unfriendly ways to obtain sweat and sweat biofouling have limited the development of this field. Herein, we exploit a highly sensitive photoelectrochemical (PEC) sensor as a detection method, a powerful laser engraving technique for the large-scale fabrication of laser-induced graphene and In-doped CdS (LIG-In-CdS) photoelectrodes, and a hydrophilic porous polyvinyl alcohol (PVA) hydrogel for natural sweat collection for fingertip touch sweat Cu2+ monitoring. The proposed sensor has several very attractive features: (i) the LIG-In-CdS photoelectrode with high photoelectric conversion efficiency can be produced by a cheap 450 nm semiconductor laser system; (ii) the sensor performs Cu2+ detection with a wide linear range of 1.28 ng/mL~5.12 μg/mL and good selectivity; (iii) the PVA hydrogel possesses an excellent antifouling effect ability and a rapid natural sweat collection ability; and (iv) the sensor exhibits feasibility and good reliability for PEC sensing of sweat Cu2+. Thus, these advantages endow the proposed method with a great deal of potential for smart monitoring of heavy metals in sweat in the future.

Keywords