Logical Methods in Computer Science (Mar 2019)
Topological Scott Convergence Theorem
Abstract
Recently, J. D. Lawson encouraged the domain theory community to consider the scientific program of developing domain theory in the wider context of $T_0$ spaces instead of restricting to posets. In this paper, we respond to this calling with an attempt to formulate a topological version of the Scott Convergence Theorem, i.e., an order-theoretic characterisation of those posets for which the Scott-convergence $\mathcal{S}$ is topological. To do this, we make use of the $\mathcal{ID}$ replacement principle to create topological analogues of well-known domain-theoretic concepts, e.g., $\mathcal{I}$-continuous spaces correspond to continuous posets, as $\mathcal{I}$-convergence corresponds to $\mathcal{S}$-convergence. In this paper, we consider two novel topological concepts, namely, the $\mathcal{I}$-stable spaces and the $\mathcal{DI}$ spaces, and as a result we obtain some necessary (respectively, sufficient) conditions under which the convergence structure $\mathcal{I}$ is topological.
Keywords