Journal of Applied Mathematics (Jan 2012)
Flow Simulations Using Two Dimensional Thermal Lattice Boltzmann Method
Abstract
Lattice Boltzmann method is implemented to study hydrodynamically and thermally developing steady laminar flows in a channel. Numerical simulation of two-dimensional convective heat transfer problem is conducted using two-dimensional, nine directional D2Q9 thermal lattice Boltzmann arrangements. The velocity and temperature profiles in the developing region predicted by Lattice Boltzmann method are compared against those obtained by ANSYS-FLUENT. Velocity and temperature profiles as well as the skin friction and the Nusselt numbers agree very well with those predicted by the self-similar solutions of fully developed flows. It is clearly shown here that thermal lattice Boltzmann method is an effective computational fluid dynamics (CFD) tool to study nonisothermal flow problems.