Environmental Research Letters (Jan 2013)

Assessing flood risk at the global scale: model setup, results, and sensitivity

  • Philip J Ward,
  • Brenden Jongman,
  • Frederiek Sperna Weiland,
  • Arno Bouwman,
  • Rens van Beek,
  • Marc F P Bierkens,
  • Willem Ligtvoet,
  • Hessel C Winsemius

DOI
https://doi.org/10.1088/1748-9326/8/4/044019
Journal volume & issue
Vol. 8, no. 4
p. 044019

Abstract

Read online

Globally, economic losses from flooding exceeded $19 billion in 2012, and are rising rapidly. Hence, there is an increasing need for global-scale flood risk assessments, also within the context of integrated global assessments. We have developed and validated a model cascade for producing global flood risk maps, based on numerous flood return-periods. Validation results indicate that the model simulates interannual fluctuations in flood impacts well. The cascade involves: hydrological and hydraulic modelling; extreme value statistics; inundation modelling; flood impact modelling; and estimating annual expected impacts. The initial results estimate global impacts for several indicators, for example annual expected exposed population (169 million); and annual expected exposed GDP ($1383 billion). These results are relatively insensitive to the extreme value distribution employed to estimate low frequency flood volumes. However, they are extremely sensitive to the assumed flood protection standard; developing a database of such standards should be a research priority. Also, results are sensitive to the use of two different climate forcing datasets. The impact model can easily accommodate new, user-defined, impact indicators. We envisage several applications, for example: identifying risk hotspots; calculating macro-scale risk for the insurance industry and large companies; and assessing potential benefits (and costs) of adaptation measures.

Keywords