E3S Web of Conferences (Jan 2021)
Improving the energy efficiency of sorting centers by identifying objects and digit-letter information with neural networks
Abstract
The article is devoted to the development and analysis of methods of identifying dynamic objects. A neural network with the architecture of SSD MobileNetV2 has been developed to solve the problem of detecting baggage tags and barcodes. Several approaches are considered to solve the problem of identifying digital-letter information: Tesseract, SSD InceptionV2, OpenCV and a convolutional neural network. The efficiency of the methods on real images was checked. It was concluded that electricity consumption can be reduced by 49.43%.