IEEE Open Journal of Engineering in Medicine and Biology (Jan 2025)

Generation of Seismocardiography Heartbeats Using a Wasserstein Generative Adversarial Network With Feature Control

  • James Skoric,
  • Yannick D'Mello,
  • David V. Plant

DOI
https://doi.org/10.1109/OJEMB.2024.3485535
Journal volume & issue
Vol. 6
pp. 119 – 126

Abstract

Read online

Goal: Seismocardiography (SCG) offers critical insights into cardiac performance, but its analysis often faces challenges due to the limited availability of data. This study aims to generate synthetic SCG heartbeats which can augment existing datasets to enable more research avenues. Methods: We trained a Wasserstein generative adversarial network (GAN) with gradient penalty on authentic SCG heartbeats. It was conditioned with embedded subject-specific identifiers to create individualized heartbeats. We employed linear permutations in the latent and conditional spaces to control signal features, and a convolutional network to classify lung volume states from real and synthetic data separately. Results: The model effectively replicated SCG signal morphology, while maintaining a level of variance which matches the variability of cardiac activity. Comparisons with real SCG waveforms yielded Pearson's r-squared correlation of 0.62 for average heartbeats. Linear manipulations were successful in controlling simple features although they were limited in more complex characteristics. Additionally, the model demonstrated strong performance in practical applications, with the synthetic data achieving an accuracy of 88% in lung volume classification as compared to 89% achieved with real data. Augmenting real data with additional synthetic data improved performance by 3%. Conclusions: GANs for artificial SCG heartbeat generation produce realistic and diverse results that have the potential to overcome data limitations, thereby enhancing SCG-based research.

Keywords