eLife (Oct 2023)

Diminishing neuronal acidification by channelrhodopsins with low proton conduction

  • Rebecca Frank Hayward,
  • F Phil Brooks III,
  • Shang Yang,
  • Shiqiang Gao,
  • Adam E Cohen

DOI
https://doi.org/10.7554/eLife.86833
Journal volume & issue
Vol. 12

Abstract

Read online

Many channelrhodopsins are permeable to protons. We found that in neurons, activation of a high-current channelrhodopsin, CheRiff, led to significant acidification, with faster acidification in the dendrites than in the soma. Experiments with patterned optogenetic stimulation in monolayers of HEK cells established that the acidification was due to proton transport through the opsin, rather than through other voltage-dependent channels. We identified and characterized two opsins which showed large photocurrents, but small proton permeability, PsCatCh2.0 and ChR2-3M. PsCatCh2.0 showed excellent response kinetics and was also spectrally compatible with simultaneous voltage imaging with QuasAr6a. Stimulation-evoked acidification is a possible source of disruptions to cell health in scientific and prospective therapeutic applications of optogenetics. Channelrhodopsins with low proton permeability are a promising strategy for avoiding these problems.

Keywords