Nano Express (Jan 2024)

A machine learning framework for the prediction of antibacterial capacity of silver nanoparticles

  • Priya Mary,
  • A Mujeeb

DOI
https://doi.org/10.1088/2632-959X/ad4c80
Journal volume & issue
Vol. 5, no. 2
p. 025022

Abstract

Read online

The biocompatibility property has made silver nanoparticles powerful candidates for various nanomedical applications. Research interest in silver nanoparticles as a viable alternative to antibiotics is gaining more attention due to their enhanced antimicrobial activity, better antibacterial activity and low cytotoxicity. Machine Learning (ML) has become a state-of-the-art analytic and modelling tool in recent times, due to its prediction capabilities and increased accuracy of the results. In this work, we present machine-learning techniques to predict the antibacterial capacity of silver nanoparticles and extended the work on antifungal studies. In the first phase, we reviewed 50 articles and collected data points for training the model, which consists of features such as core size, shape of the nanoparticle, dosage, bacteria/fungi species and zone of inhibition (ZOI). Then, we trained the data using eight different machine-learning regression algorithms and validated the models’ performance using four metrics such as RMSE, MSE, MAE and R ^2 . Furthermore, the importance of features used in the prediction models has been evaluated. The feature importance revealed that the core size of silver nanoparticles is the prominent feature in the prediction of the antibacterial capacity. The optimum model for the prediction of antibacterial and antifungal activity has been identified. Finally, the model’s validation has also been demonstrated. This work enables researchers to utilize Machine Learning which in turn can address the challenges of time consumption, and cost in laboratory experiments while minimising the reliance on trial and error.

Keywords