Remote Sensing (Mar 2023)
Estimating Effects of Natural and Anthropogenic Activities on Trophic Level of Inland Water: Analysis of Poyang Lake Basin, China, with Landsat-8 Observations
Abstract
The intensification of anthropogenic activities has led to the infiltration of enormous quantities of pollutants into rivers and lakes, resulting in significant deterioration in water quality and a more prominent occurrence of eutrophication. Poyang Lake, the largest freshwater lake in China, is facing a severe challenge related to eutrophication, which seriously threatens the delivery of the ecosystem service and the safety of drinking water. To address this challenge, Landsat-8 Operational Land Imager (OLI) data for the Poyang Lake Basin (PLB) from May 2013 to December 2020 were used. Since inland water bodies with complex optical characteristics, we developed a semi-analytical algorithm to assess the trophic state of the water based on two cruise field measurements in 2016 and 2019. Combining the semi-analytical trophic level index (TLI) with an atmospheric correction model is the most suitable model for OLI images of the PLB, this model was then applied to Landsat-8 time series observations. The trends of the trophic state of water bodies in PLB were revealed, and the annual, quarterly and monthly percentages of eutrophic water bodies were calculated. Natural and anthropogenic factors were then used to explain the changes in the trophic state of the PLB waters. The main findings are as follows: (1) From the 8-year observation results, it can be seen that the variation of trophic level of water in PLB showed obviously spatial and temporal variations, characterized by higher in the north than in the south and higher in winter than in summer. (2) Temperature promoted the growth of harmful algae and plays an essential role in affecting changes in the trophic level of the water. (3) Changes in the trophic level of water bodies in PLB were mainly affected by human activities. The results of spatial and temporal variation of the trophic level of water and the driving factors in PLB can extend our knowledge of water quality degradation and provide essential references for relevant policy-making institutions.
Keywords