Proceedings (May 2024)
Solar-Enhanced Photocatalytic Decontamination of Water from Tetracycline Antibiotics and Its Application in Aquaculture
Abstract
The occurrence of emerging pharmaceutical contaminants, especially antibiotics in water systems is an alarming issue and is addressed using Advanced Oxidation Processes (AOPs). In this study, the degradation of antibiotic tetracycline hydrochloride (TCT) is evaluated using UV and solar light as the source of energy in the presence of semiconductor oxide catalyst ZnO. The results of the removal efficiency of TCT using UV is slightly less than that of solar light. Solar energy as a source of irradiation is economically feasible, follow-up studies is carried out under solar light. Further, the effective solar photocatalytic degradation of TCT in distilled water and aquaculture wastewater is deeply investigated. TCT showed a 62% degradation efficiency in deionized water at the laboratory scale, while aquaculture effluent exhibited 87% degradation efficiency with the ZnO catalyst after 60 min of solar irradiation. The effect of multiple contaminants such as chloroquine (CLQ) and sulphamethoxazole (SMX) on TCT degradation is also investigated. CLQ inhibited the degradation of TCT, whereas SMX did not. The effective operational parameters, such as pH, irradiation time, photocatalyst dosage, the effect of oxidants, the effect of anions, and TCT concentration, were studied consecutively. The pseudo-first-order kinetic model best fit the experimental results (different tetracycline concentrations). Complete COD removal of TCT concentrations is achieved in deionized (≈90 mg/L) and aquaculture wastewater. The catalyst was characterized using SEM, TEM, and XRD images. LC-QTOF analysis was used to identify the intermediates formed during the degradation using a mechanistic pathway. The results suggest the possibility of using inexpensive natural and non-renewable solar energy to purify TCT-contaminated real wastewater, thereby enabling the reuse of scarce water resources.
Keywords