Earth System Science Data (Aug 2024)

A 100 m gridded population dataset of China's seventh census using ensemble learning and big geospatial data

  • Y. Chen,
  • C. Xu,
  • Y. Ge,
  • X. Zhang,
  • Y. Zhou

DOI
https://doi.org/10.5194/essd-16-3705-2024
Journal volume & issue
Vol. 16
pp. 3705 – 3718

Abstract

Read online

China has undergone rapid urbanization and internal migration in the past few years, and its up-to-date gridded population datasets are essential for various applications. Existing datasets for China, however, suffer from either outdatedness or failure to incorporate data from the latest Seventh National Population Census of China, conducted in 2020. In this study, we develop a novel population downscaling approach that leverages stacking ensemble learning and big geospatial data to produce up-to-date population grids at a 100 m resolution for China using seventh census data at both county and town levels. The proposed approach employs stacking ensemble learning to integrate the strengths of random forest, XGBoost, and LightGBM through fusing their predictions in a training mechanism, and it delineates the inhabited areas from big geospatial data to enhance the gridded population estimation. Experimental results demonstrate that the proposed approach exhibits the best-fit performance compared to individual base models. Meanwhile, the out-of-sample town-level test set indicates that the estimated gridded population dataset (R2=0.8936) is more accurate than existing WorldPop (R2=0.7427) and LandScan (R2=0.7165) products for China in 2020. Furthermore, with the inhabited area enhancement, the spatial distribution of population grids is intuitively more reasonable than the two existing products. Hence, the proposed population downscaling approach provides a valuable option for producing gridded population datasets. The estimated 100 m gridded population dataset of China holds great significance for future applications, and it is publicly available at https://doi.org/10.6084/m9.figshare.24916140.v1 (Chen et al., 2024b).