Applied Sciences (Jul 2023)

Improved YOLOv4-Tiny Target Detection Method Based on Adaptive Self-Order Piecewise Enhancement and Multiscale Feature Optimization

  • Dengsheng Cai,
  • Zhigang Lu,
  • Xiangsuo Fan,
  • Wentao Ding,
  • Bing Li

DOI
https://doi.org/10.3390/app13148177
Journal volume & issue
Vol. 13, no. 14
p. 8177

Abstract

Read online

To improve the accuracy of material identification under low contrast conditions, this paper proposes an improved YOLOv4-tiny target detection method based on an adaptive self-order piecewise enhancement and multiscale feature optimization. The model first constructs an adaptive self-rank piecewise enhancement algorithm to enhance low-contrast images and then considers the fast detection ability of the YOLOv4-tiny network. To make the detection network have a higher accuracy, this paper adds an SE channel attention mechanism and an SPP module to this lightweight backbone network to increase the receptive field of the model and enrich the expression ability of the feature map. The network can pay more attention to salient information, suppress edge information, and effectively improve the training accuracy of the model. At the same time, to better fuse the features of different scales, the FPN multiscale feature fusion structure is redesigned to strengthen the fusion of semantic information at all levels of the network, enhance the ability of network feature extraction, and improve the overall detection accuracy of the model. The experimental results show that compared with the mainstream network framework, the improved YOLOv4-tiny network in this paper effectively improves the running speed and target detection accuracy of the model, and its mAP index reaches 98.85%, achieving better detection results.

Keywords