Results in Engineering (Jun 2024)

Co-immobilization of laccase-mediator system to catalyze the synthesis of theaflavins from tea polyphenols

  • Wei Li,
  • Shengxian Chen,
  • Yongqi Lu,
  • Jiangjie Yu,
  • Shiguang Zhao

Journal volume & issue
Vol. 22
p. 102062

Abstract

Read online

The co-immobilized laccase-mediator system (LMS) has broad development prospects in the fields of biocatalysis, biochemistry, and environmental remediation. In this study, laccase and mediator molecules were co-immobilized in functionally modified calcium alginate microspheres to improve their catalytic activity and stability and to systematically characterize the physicochemical properties and evaluate the catalytic performance of the co-immobilized laccase-mediator system. The co-immobilized LMS was used to catalyze the synthesis of theaflavins (TFs) from tea polyphenols, improve the catalytic efficiency, realize the recycling of the system, and explore the safety of the catalytic products. The results showed that the catalytic efficiency of the co-immobilized LMS was significantly improved and the relative activity remained above 50% after 10 cycles. The in vitro safety of the catalytic product was verified by Human hepatocellular carcinoma (HepG2) cell-related indexes. The results show that the co-immobilized laccase mediator system has great development potential in the industrial application of theaflavins.

Keywords