Materials (Jan 2023)

Effect of Mo Content on Hydrogen Evolution Reaction of 1400 MPa-Grade High-Strength Bolt Steel

  • Xilin Xiong,
  • Keke Song,
  • Jinxu Li,
  • Yanjing Su

DOI
https://doi.org/10.3390/ma16031020
Journal volume & issue
Vol. 16, no. 3
p. 1020

Abstract

Read online

The effect of Mo content of 1400 MPa-grade high-strength bolt steel on hydrogen diffusion behavior and the hydrogen evolution reaction were studied using a hydrogen permeation experiment, potentiodynamic polarization tests, thermal desorption spectroscopy, and the first-principle calculation. Two 1400 MPa-grade high-strength bolt steels with different Mo content were used. Based on the potentiodynamic polarization tests, both steels’ electrochemical behavior was similar in the test range. The hydrogen permeation experiment showed that the process of hydrogen adsorption and absorption was significantly promoted, and hydrogen desorption and recombination were slightly promoted, with the Mo content increasing from 0.70 to 1.09 wt%. The thermal desorption spectroscopy showed the overall reaction of hydrogen permeation and evolution. The increasing Mo content facilitated hydrogen entry behavior and increased the hydrogen content. According to the first-principle calculation and the density functional theory, this phenomenon is induced by the stronger bonding ability of Mo-H than Fe-H. This work could guide the design of 1400 MPa-grade high-strength bolt steel.

Keywords