Frontiers in Medicine (Aug 2024)
Multi-omics analysis reveals the landscape of tumor microenvironments in left-sided and right-sided colon cancer
Abstract
BackgroundDistinct clinical features and molecular characteristics of left-sided colon cancer (LCC) and right-sided colon cancer (RCC) suggest significant variations in their tumor microenvironments (TME). These differences can impact the efficacy of immunotherapy, making it essential to investigate and understand these disparities.MethodsWe conducted a multi-omics analysis, including bulk RNA sequencing (bulk RNA-seq), single-cell RNA sequencing (scRNA-seq), and whole-exome sequencing (WES), to investigate the constituents and characteristic differences of the tumor microenvironment (TME) in left-sided colon cancer (LCC) and right-sided colon cancer (RCC).ResultDeconvolution algorithms revealed significant differences in infiltrated immune cells between left-sided colon cancer (LCC) and right-sided colon cancer (RCC), including dendritic cells, neutrophils, natural killer (NK) cells, CD4 and CD8 T cells, and M1 macrophages (P < 0.05). Notably, whole-exome sequencing (WES) data analysis showed a significantly higher mutation frequency in RCC compared to LCC (82,187/162 versus 18,726/115, P < 0.01). Single-cell analysis identified predominant tumor cell subclusters in RCC characterized by heightened proliferative potential and increased expression of major histocompatibility complex class I molecules. However, the main CD8 + T cell subpopulations in RCC exhibited a highly differentiated state, marked by T cell exhaustion and recent activation, defined as tumor-specific cytotoxic T lymphocytes (CTLs). Immunofluorescence and flow cytometry results confirmed this trend. Additionally, intercellular communication analysis demonstrated a greater quantity and intensity of interactions between tumor-specific CTLs and tumor cells in RCC.ConclusionRCC patients with an abundance of tumor-specific cytotoxic T lymphocytes (CTLs) and increased immunogenicity of tumor cells in the TME may be better candidates for immune checkpoint inhibitor therapy.
Keywords