Moldavian Journal of the Physical Sciences (Jul 2017)

Forced convective flow over a porous plate with variable fluid properties and chemical reaction: an application of the lie group transformation

  • Das, Kalidas,
  • Acharya, Nilangshu,
  • Duari, Pinaki Ranjan

Journal volume & issue
Vol. 16, no. 1-2
pp. 46 – 63

Abstract

Read online

A study has been carried out to obtain solutions for heat and mass transfer in a forced magnetohydrodynamic convective flow of an electrically conducting incompressible fluid over a permeable flat plate embedded in a porous medium with thermal convective surface boundary conditions due to thermal radiation, temperature dependent viscosity, and thermal conductivity taking into account the first-order homogeneous chemical reaction. A scaling group of transformations has been applied to the governing equations. The transformed self-similar nonlinear ordinary differential equations, along with the boundary conditions, have been solved numerically using a fourth-order Runge–Kutta method and a Shooting technique. The effect of various relevant parameters on the flow field, temperature, concentration, wall skin friction, heat flux, and wall mass flux has been elucidated through graphs and tables. A comparison with previously published results has been presented.