Energies (Nov 2024)

Proposal of Low-Speed Sensorless Control of IPMSM Using a Two-Interval Six-Segment High-Frequency Injection Method with DC-Link Current Sensing

  • Daniel Konvicny,
  • Pavol Makys,
  • Alex Franko

DOI
https://doi.org/10.3390/en17225789
Journal volume & issue
Vol. 17, no. 22
p. 5789

Abstract

Read online

This paper proposes a modification to existing saliency-based, sensorless control strategy for interior permanent magnet synchronous motors. The proposed approach leverages a two-interval, six-segment high-frequency voltage signal injection technique. It aims to improve rotor position and speed estimation accuracy when utilizing a single current sensor positioned in the inverter’s DC-bus circuit. The key innovation lies in modifying both the high-frequency signal injection and demodulation processes to address challenges in accurate phase current reconstruction and rotor position estimation, at low and zero speeds. A significant modification to the traditional high-frequency voltage signal injection method is introduced, which involves splitting the signal injection and the field-oriented control algorithm into two distinct sampling and switching periods. This approach ensures that no portion of the injected voltage space vector falls into the immeasurable region of space vector modulation, which could otherwise compromise current measurements. The dual-period structure, termed the two-interval six-segment high-frequency injection, allows for more precise current measurement during the signal injection period while maintaining optimal motor control during the field-oriented control period. Furthermore, this paper explores a different demodulation technique that improves the estimation of rotor position and speed. By employing a synchronous filter in combination with a phase-locked loop, the proposed method enhances the robustness of the system against noise and inaccuracies typically encountered in phase current reconstruction. The effectiveness of the proposed modifications is demonstrated through comprehensive simulation results. These results confirm that the enhanced method offers more reliable rotor position and speed estimates compared to the existing sensorless technique, making it particularly suitable for applications requiring high precision in motor control.

Keywords