Chemical and Biochemical Engineering Quarterly (Jul 2023)

Enhancement of Vanillin Partitioning and Recovery in Nanoparticle-based Aqueous Two-phase System Containing PEG and Dextran Polymers

  • M. Nouri,
  • S. Shahriari,
  • P. Nabi,
  • G. Pazuki

DOI
https://doi.org/10.15255/CABEQ.2023.2201
Journal volume & issue
Vol. 37, no. 2
pp. 55 – 65

Abstract

Read online

Vanillin, widely utilized in the food, medicinal, and pharmaceutical industries, requires an improved extraction process that is cost-effective and environmentally friendly to meet the growing industrial demand. To tackle this challenge, we conducted an investigation on a nanoparticle-based aqueous two-phase system (ATPS), incorporating polyethylene glycol (PEG) and dextran (DEX). The primary objective was to develop an ATPS that is non-alkaline, operates under mild environmental conditions, and is both non-toxic and cost-effective. The study focused on identifying a suitable nanoparticle that could improve the partitioning of vanillin in ATPS and facilitate economically favorable separation processes. Various nanoparticles were evaluated as additives to enhance vanillin partitioning. The study explores the influence of parameters, such as polymer weight percentages and DEX molecular weight on vanillin partitioning and recovery percentage. Additionally, the impact of incorporating different nanoparticles was assessed in the optimized system composed of 6.5 wt% PEG6000 and 7.8 wt% DEX15000. Results indicate that the addition of only 0.001 g of silver nanoparticles to the optimal system improved the partition coefficient by 42 % and the vanillin recovery percentage by approximately 8 % compared to the nanoparticle-free ATPS.

Keywords