IET Computer Vision (Mar 2019)

Multi‐view learning for benign epilepsy with centrotemporal spikes

  • Ming Yan,
  • Ling Liu,
  • Sunitha Basodi,
  • Yi Pan

DOI
https://doi.org/10.1049/iet-cvi.2018.5162
Journal volume & issue
Vol. 13, no. 2
pp. 109 – 116

Abstract

Read online

Benign epilepsy with centrotemporal spikes (BECT) may be the most popular epilepsy to attack children. In recent years, more and more studies have shown that magnetic resonance imaging (MRI) and functional magnetic resonance imaging (fMRI) are promising techniques in distinguishing BECT patients from healthy controls. However, these existing works have suffered from two limitations. On the one hand, they have paid more attention to the brain changes between BETC and healthy controls than developing machine learning methods that can recognize BECT patients. On the other hand, most of the existing approaches extract hand‐crafted features from MRI or fMRI, which cannot obtain the desired performance due to the limited representative capacity of the used features. To address these issues, we propose a novel classification method by fusing the predictions of three different views: hand‐crafted features view, MRI view, and fMRI view. The final result is obtained by passing through those predictions after a fusing neural network. The basic idea of our method is that multiple views could provide complementary information and thus can boost the classification performance. Extensive experiments show that the proposed multi‐view method is remarkably superior to single‐view methods.

Keywords