NeuroImage (Dec 2023)

EEG spectral slope: A reliable indicator for continuous evaluation of consciousness levels during propofol anesthesia

  • Yun Zhang,
  • Yubo Wang,
  • Huanhuan Cheng,
  • Fei Yan,
  • Dingning Li,
  • Dawei Song,
  • Qiang Wang,
  • Liyu Huang

Journal volume & issue
Vol. 283
p. 120426

Abstract

Read online

The level of consciousness undergoes continuous alterations during anesthesia. Prior to the onset of propofol-induced complete unconsciousness, degraded levels of behavioral responsiveness can be observed. However, a reliable index to monitor altered consciousness levels during anesthesia has not been sufficiently investigated. In this study, we obtained 60-channel EEG data from 24 healthy participants during an ultra-slow propofol infusion protocol starting with an initial concentration of 1 μg/ml and a stepwise increase of 0.2 μg/ml in concentration. Consecutive auditory stimuli were delivered every 5 to 6 s, and the response time to the stimuli was used to assess the responsiveness levels. We calculated the spectral slope in a time-resolved manner by extracting 5-second EEG segments at each auditory stimulus and estimated their correlation with the corresponding response time. Our results demonstrated that during slow propofol infusion, the response time to external stimuli increased, while the EEG spectral slope, fitted at 15–45 Hz, became steeper, and a significant negative correlation was observed between them. Moreover, the spectral slope further steepened at deeper anesthetic levels and became flatter during anesthesia recovery. We verified these findings using an external dataset. Additionally, we found that the spectral slope of frontal electrodes over the prefrontal lobe had the best performance in predicting the response time. Overall, this study used a time-resolved analysis to suggest that the EEG spectral slope could reliably track continuously altered consciousness levels during propofol anesthesia. Furthermore, the frontal spectral slope may be a promising index for clinical monitoring of anesthesia depth.

Keywords