Bioresources and Bioprocessing (Apr 2025)
Vinasses valorization into short-chain fatty acids: microbiome robustness against process variations
Abstract
Abstract The valorization of vinasses into short-chain fatty acids (SCFAs) via anaerobic fermentation (AF) is an emerging approach that remains under research. Given the diverse microbial metabolisms simultaneously occurring in AF, the control of operational parameters is essential to avoid process destabilization. To unravel their effect, the novelty of this investigation relied on the evaluation of the robustness of AF process against operational perturbation deliberately set (i.e. hydraulic retention time (HRT) and temperature increase). Regardless the applied perturbation, similar yields (0.5–0.6 g COD-SCFAs/g VSin) were attained. However, the selected perturbations exerted an effect on microbiome development. Whereas the temperature increase mediated a 49.70% microbiome dissimilarity, only a 21.91% dissimilarity was caused by the HRT increase. Microbial analysis revealed Clostridiales, Prevotella and Megasphaera as key bacteria in vinasses degradation. The similar bioconversion obtained despite the different microbiomes developed after each perturbation suggested a functional redundancy highlighting the AF robustness. These findings evidenced AF as a feasible biotechnology to further valorize vinasse into SCFAs, demonstrating the process stability against common perturbations that might be encountered at industrial scale.
Keywords