Fractal and Fractional (Dec 2024)

Automatic Voltage Regulator Betterment Based on a New Fuzzy FOPI+FOPD Tuned by TLBO

  • Mokhtar Shouran,
  • Mohammed Alenezi

DOI
https://doi.org/10.3390/fractalfract9010021
Journal volume & issue
Vol. 9, no. 1
p. 21

Abstract

Read online

This paper presents a novel Fuzzy Logic Controller (FLC) framework aimed at enhancing the performance and stability of Automatic Voltage Regulators (AVRs) in power systems. The proposed system combines fuzzy control theory with the Fractional Order Proportional Integral Derivative (FOPID) technique and employs cascading control theory to significantly improve reliability and robustness. The unique control architecture, termed Fuzzy Fractional Order Proportional Integral (PI) plus Fractional Order Proportional Derivative (PD) plus Integral (Fuzzy FOPI+FOPD+I), integrates advanced control methodologies to achieve superior performance. To optimize the controller parameters, the Teaching–Learning-Based Optimization (TLBO) algorithm is utilized in conjunction with the Integral Time Absolute Error (ITAE) objective function, ensuring precise tuning for optimal control behavior. The methodology is validated through comparative analyses with controllers reported in prior studies, highlighting substantial improvements in performance metrics. Key findings demonstrate significant reductions in peak overshoot, peak undershoot, and settling time, emphasizing the proposed controller’s effectiveness. Additionally, the robustness of the controller is extensively evaluated under challenging scenarios, including parameter uncertainties and load disturbances. Results confirm its ability to maintain stability and performance across a wide range of conditions, outperforming existing methods. This study presents a notable contribution by introducing an innovative control structure that addresses critical challenges in AVR systems, paving the way for more resilient and efficient power system operations.

Keywords