Magnetism (Apr 2024)
Magnetoresistive Evidence of Degeneracy in Nanomagnets Obtained by Electrodeposition Technique
Abstract
Inspired in pyrochlore materials presenting residual entropy and featuring collective excitation behaving like emergent monopoles, geometrically frustrated arrays of nanomagnets, denominated artificial spin ices (ASIs), were proposed as an interesting platform to investigate such excitation at room temperature. However, in such artificial systems, emergent magnetic monopoles lack the same freedom present their natural counterpart, once energetic strings connecting opposite magnetic charges arise. In this work, we aim to experimentally investigate the proposed degeneracy obtained in connected square arrays of ASIs, a characteristic that allows a reduction in the string connecting monopole–antimonopole pairs in regular non-connected ASIs and could represent an important development for technological applications of connected nanomagnets. As in general those systems are developed by nanofabrication processes involving expensive and time-consuming physical vapour deposition techniques, we also present a new nanofabrication route using an electrodeposition technique for permalloy growth in different lattice geometries as an alternative for fast and low-cost ASI system production.
Keywords