Materials Research (Sep 2016)
Effect of Spun Velocities and Composition on the Microstructure and Transformation Temperatures of TiNi Shape Memory Ribbons
Abstract
Ti‒50.13Ni and Ti‒49.62Ni (at.%) shape memory alloy ribbons were fabricated by melt-spinning method at different circumferential wheel velocities. The effects of wheel velocity, chemical composition and heat treatments on microstructure and Transformation temperature were investigated. Differences in wheel velocity led to differences in cooling rate and sample dimension, as well as in phase transformation temperatures. Two heat treatment conditions were studied, 350°C for 1h and 350°C for 5h. In the samples produced at high wheel velocity and heat-treated at 350°C for 5h, nanosized Ti-rich precipitates were observed in both chemical compositions. Cross-sectional microstructure was studied by optical microscopy; SEM was used to study the nanometric grains and nano precipitation. The transformation temperatures were analyzed by DSC.
Keywords