Water Science and Technology (Jan 2024)
Technical structure and influencing factors of nitrogen and phosphorus removal in constructed wetlands
Abstract
Constructed wetlands purify water quality by synergistically removing nitrogen and phosphorus pollutants from water, among other pollutants such as organic matter through a physical, chemical, and biological composite remediation mechanism formed between plants, fillers, and microorganisms. Compared with large-scale centralized wastewater treatment systems with high cost and energy consumption, the construction and operation costs of artificial wetlands are relatively low, do not require large-scale equipment and high energy consumption treatment processes, and have the characteristics of green, environmental protection, and sustainability. Gradually, constructed wetlands are widely used to treat nitrogen and phosphorus substances in wastewater. Therefore, this article discusses in detail the role and interaction of the main technical structures (plants, microorganisms, and fillers) involved in nitrogen and phosphorus removal in constructed wetlands. At the same time, it analyses the impact of main environmental parameters (such as pH and temperature) and operating conditions (such as hydraulic load and hydraulic retention time, forced ventilation, influent carbon/nitrogen ratio, and feeding patterns) on nitrogen and phosphorus removal in wetland systems, and addresses the problems currently existing in relevant research, the future research directions are prospected in order to provide theoretical references for scholars’ research. HIGHLIGHTS Plants, microorganisms, and fillers play their respective roles, and also have complex relationships in constructed wetlands.; Environmental parameters and operating conditions are the main factors affecting nitrogen and phosphorus removal efficiency of constructed wetlands.; From the actual operating results, there are still some shortcomings in controlling nitrogen and phosphorus pollution.;
Keywords