Batteries (Feb 2024)

Modelling Binder Degradation in the Thermal Treatment of Spent Lithium-Ion Batteries by Coupling Discrete Element Method and Isoconversional Kinetics

  • Christian Nobis,
  • Marco Mancini,
  • Michael Fischlschweiger

DOI
https://doi.org/10.3390/batteries10020063
Journal volume & issue
Vol. 10, no. 2
p. 63

Abstract

Read online

Developing efficient recycling processes with high recycling quotas for the recovery of graphite and other critical raw materials contained in LIBs is essential and prudent. This action holds the potential to substantially diminish the supply risk of raw materials for LIBs and enhance the sustainability of their production. An essential processing step in LIB recycling involves the thermal treatment of black mass to degrade the binder. This step is crucial as it enhances the recycling efficiency in subsequent processes, such as flotation and leaching-based processing. Therefore, this paper introduces a Representative Black Mass Model (RBMM) and develops a computational framework for the simulation of the thermal degradation of polymer-based binders in black mass (BM). The models utilize the discrete element method (DEM) with a coarse-graining (CG) scheme and the isoconversional method to predict binder degradation and the required heat. Thermogravimetric analysis (TGA) of the binder polyvinylidene fluoride (PVDF) is utilized to determine the model parameters. The model simulates a specific thermal treatment case on a laboratory scale and investigates the relationship between the scale factor and heating rate. The findings reveal that, for a particular BM system, a scaling factor of 100 regarding the particle diameter is applicable within a heating rate range of 2 to 22 K/min.

Keywords