Науковий вісник Львівського національного університету ветеринарної медицини та біотехнологій імені С.З. Ґжицького: Серія Ветеринарні науки (Aug 2020)

Correction of the state of antioxidant protection system of the fowl’s organism under the circumstances of being poisoned by Derosal

  • O. S. Kochevenko,
  • I. O. Zhukova,
  • O. M. Bobrytska,
  • I. O. Kostiuk,
  • L. A. Vodopyanova

DOI
https://doi.org/10.32718/nvlvet9808
Journal volume & issue
Vol. 22, no. 98
pp. 46 – 50

Abstract

Read online

In fact, Free radical oxidation is one of the required factors of homeostasis as far as the active forms of oxygen, which have unpaired electron, perform useful functions, they are necessary intermediaries of numerous processes of normal cells’ functioning such as biosynthesis of prostaglandins and leukotriene as well as other biologically active substances. Also, they take part in pathological processes such as: inflammation, fever and others. Free radical oxidation is the process of direct oxygen transferring to the substrate forming peroxide, ketones, aldehydes, etc. Some amino acids, proteins, water and carbohydrates prone to the processes of peroxidation, but crucial place is granted to lipids at the expanse of fatty acids which are included to their composition. The article highlights the information concerning the analysis of the state of antioxidant system of hens in the process of feeding them with subtoxic doses of fungicide of Derosal (BAYER, Germany) (0.1 LD50 for a fowl, 900 mg/kg of the body mass) which active ingredient is benzimidazole carbamate (carbendazim, BMC). It presents the changes of these indicators in the process of using pharmacological and natural antioxidants. The analysis has figured out that giving Derosal to the hens without corrections (II group) has been followed with the activation of the process of lipids’ peroxidation (POL) in the blood plasma, that is followed with the increase of concentration of primary and secondary lipoperoxidation products – diene conjugates (DC) and TBA-active products on the average up to 21.0–25.0 %, catalase activity – up to 38.5 % and decrease of superoxide dismutase activity (SOD) up to 21.8 % and АОА – up to 17.8 %, that shows the adverse effects of pesticides on the system of antioxidant protection of the organism. In the fowls’ groups III, IV and V the adding of antioxidant E-selenium, ascorbic acid and thermally untreated buckwheat seeds as the source of quercetins and anthocyanins has led to the induction of antioxidant resources that is shown by the decrease in comparison with the control of content of diene conjugates, malonic dialdehyde and catalase (in average up to 13.6–33.6–18.0 % accordingly) and compensatory strengthening of superoxide dismutase activity and general activity of antioxidant (АОА) on the average up to 44.9–72.1–76.5 % and 15.3–13.4–21.7 % accordingly. In comparison with group II the activity of catalase has been lower as well as the activity of superoxide dismutase has been higher in all the groups almost in 1.5–2 times (Р ≤ 0.001).

Keywords