PLoS ONE (Jan 2024)
Biochemical and molecular profiling of induced high yielding M3 mutant lines of two Trigonella species: Insights into improved yield potential.
Abstract
Trigonella, commonly known as Fenugreek, is among the most promising medicinal herbs consumed worldwide due its protein rich dietary contributions. This study involved induced mutagenesis on two Trigonella species (Trigonella foenum-graecum var. PEB and Trigonella corniculata var. Pusa kasuri) using caffeine and sodium azide as mutagens, resulting in the identification of nine high-yielding mutant lines in the M3 generation. Molecular characterization using SCoT markers revealed a high polymorphism of 28.3% and 46.7% in PEB and Pusa kasuri, respectively, facilitating the investigation of genetic divergence among the control and mutant lines. Similarity correlation analysis indicated a high similarity between mutant A and mutant C (0.97) and between mutant J and mutant O (0.88), while the lowest similarity was observed between mutant B and mutant F (0.74) and between control and mutant L (0.58). Mutant F and Mutant J displayed the highest seed yield and its attributing traits, and seed protein content in PEB and Pusa kasuri, respectively. Physiological parameters, including chlorophyll content (Mutants A and N) and carotenoids (mutant A and J), exhibited improvements. Assessment of stomatal and seed characteristics using scanning electron microscopy may lead to improved physiological processes and distinction at the interspecific level, respectively. Methanolic extracts of the control and the mutant lines of both species were subjected to GC-MS analysis, revealing 24 major phytocompounds known for their pharmacological activities (antioxidant, anti-inflammatory, anticancer, etc.). Statistical methods such as Pearson correlation heatmap and pairwise scatter plot matrix provided insights into the correlations and linear associations among parameters for both PEB and Pusa kasuri. The strong correlation between iron content and seeds per pod in the mutant lines suggests a promising avenue for further research. Continued research and breeding efforts using these mutants can lead to significant advancements in agriculture and medicine, benefiting farmers, consumers, and industries alike.