Sensors (Sep 2024)

Working Memory Workload When Making Complex Decisions: A Behavioral and EEG Study

  • Michela Balconi,
  • Katia Rovelli,
  • Laura Angioletti,
  • Roberta A. Allegretta

DOI
https://doi.org/10.3390/s24175754
Journal volume & issue
Vol. 24, no. 17
p. 5754

Abstract

Read online

Working memory (WM) is crucial for adequate performance execution in effective decision-making, enabling individuals to identify patterns and link information by focusing on current and past situations. This work explored behavioral and electrophysiological (EEG) WM correlates through a novel decision-making task, based on real-life situations, assessing WM workload related to contextual variables. A total of 24 participants performed three task phases (encoding, retrieval, and metacognition) while their EEG activity (delta, theta, alpha, and beta frequency bands) was continuously recorded. From the three phases, three main behavioral indices were computed: Efficiency in complex Decision-making, Tolerance of Decisional Complexity, and Metacognition of Difficulties. Results showed the central role of alpha and beta bands during encoding and retrieval: decreased alpha/beta activity in temporoparietal areas during encoding might indicate activation of regions related to verbal WM performance and a load-related effect, while decreased alpha activity in the same areas and increased beta activity over posterior areas during retrieval might indicate, respectively, active information processing and focused attention. Evidence from correlational analysis between the three indices and EEG bands are also discussed. Integration of behavioral and metacognitive data gathered through this novel task and their interrelation with EEG correlates during task performance proves useful to assess WM workload during complex managerial decision-making.

Keywords