Current Research in Parasitology and Vector-Borne Diseases (Jan 2022)

An atlas of the germ ball-cercaria-schistosomulum transition in Schistosoma mansoni, using confocal microscopy and in situ hybridisation

  • Sophie J. Parker-Manuel,
  • R. Alan Wilson

Journal volume & issue
Vol. 2
p. 100087

Abstract

Read online

Schistosomes are complex platyhelminth parasites with a genome comprising ∼12,000 protein-coding genes, three distinct generations, and at least seven distinct phenotypes. We chart here cellular and gene expression changes associated with development of the cercaria, in the intramolluscan daughter sporocyst, and its transformation into the skin stage schistosomulum upon infection of the mammalian host. We describe the morphology of the early daughter sporocyst and the increasing complexity of cellular organisation in germ balls as they rapidly develop into cercariae. We show how individual myocytes differentiate and combine to create the complex musculature of the head capsule and body wall. In situ hybridisation reveals that some transcripts encoding the secretory proteins, released during skin penetration, are expressed in gland-cell precursors very early in germ ball development. However, those for the projected anti-inflammatory protein Sm16-stathmin are widely expressed in germ ball tissues, suggesting the protein has intracellular functions. Transcripts for smkk7 are expressed in six cells of the larval body, while the KK7 protein is present throughout the peripheral nerve net, including sensory nerve bulbs, providing a marker for the nerve net in adult worms. We also note that the cercaria-schistosomulum transformation is accompanied by tissue remodelling without growth.

Keywords