Ecology and Evolution (Oct 2024)

Predator‐specific mortality of sage‐grouse nests based on predator DNA on eggshells

  • Nolan A. Helmstetter,
  • Courtney J. Conway,
  • Shane Roberts,
  • Jennifer R. Adams,
  • Paul D. Makela,
  • Lisette P. Waits

DOI
https://doi.org/10.1002/ece3.70213
Journal volume & issue
Vol. 14, no. 10
pp. n/a – n/a

Abstract

Read online

Abstract Greater sage‐grouse (hereafter sage‐grouse; Centrocercus urophasianus) populations have declined across their range. Increased nest predation as a result of anthropogenic land use is one mechanism proposed to explain these declines. However, sage‐grouse contend with a diverse suite of nest predators that vary in functional traits (e.g., search tactics or hunting mode) and abundance. Consequently, generalizing about factors influencing nest fate is challenging. Identifying the explicit predator species responsible for nest predation events is, therefore, critical to understanding causal mechanisms linking land use to patterns of sage‐grouse nest success. Cattle grazing is often assumed to adversely affect sage‐grouse recruitment by reducing grass height (and hence cover), thereby facilitating nest detection by predators. However, recent evidence found little support for the hypothesized effect of grazing on nest fate at the pasture scale. Rather, nest success appears to be similar on pastures grazed at varying intensities. One possible explanation for the lack of observed effect involves a localized response by one or more nest predators. The presence of cattle may cause a temporary reduction in predator density and/or use within a pasture (the cattle avoidance hypothesis). The cattle avoidance hypothesis predicts a decreased probability of at least one sage‐grouse nest predator predating sage‐grouse nests in pastures with livestock relative to pastures without livestock present during the nesting season. To test the cattle avoidance hypothesis, we collected predator DNA from eggshells from predated nests and used genetic methods to identify the sage‐grouse nest predator(s) responsible for the predation event. We evaluated the influence of habitat and grazing on predator‐specific nest predation. We evaluated the efficacy of our genetic method by deploying artificial nests with trail cameras and compared the results of our genetic method to the species captured via trail camera. Our molecular methods identified at least one nest predator captured predating artificial nests via trail camera for 33 of 35 (94%) artificial nests. We detected nest predators via our molecular analysis at 76 of 114 (67%) predated sage‐grouse nests. The primary predators detected at sage‐grouse nests were coyotes (Canis latrans) and corvids (Corvidea). Grazing did not influence the probability of nest predation by either coyotes or corvids. Sagebrush canopy cover was negatively associated with the probability a coyote predated a nest, distance to water was positively associated with the probability a corvid predated a nest, and average minimum temperature was negatively associated with the probability that either a coyote or a corvid predated a nest. Our study provides a framework for implementing an effective, non‐invasive method for identifying sage‐grouse nest predators that can be used to better understand how management actions at local and regional scales may impact an important component of sage‐grouse recruitment.

Keywords