Journal of Materials Research and Technology (Jul 2024)
Re-heat treatment effect on the microstructure and mechanical properties of the Inconel 706 alloy for repair
Abstract
Although the understanding of microstructure and mechanical property changes in re-heat-treated Inconel alloys is important to evaluate the performance of repaired components, recent research has mainly focused on the heat treatment effect of as-fabricated products. Thus, in this work, the performance change of the used Inconel 706 rotor-disks under varying re-heat treatment conditions was investigated. Because of the heat exposure of the used rotor-disk component, a high fraction of plate-like η phase (6.36%) and compact γ'/γ'' co-precipitate structure were initiated in the as-received sample. After re-heat treatment, η phase dissolution breakage and compact to non-compact γ'/γ'' co-precipitate structure transition occur, resulting in mechanical properties changes of the Inconel 706 alloy. As a result, η phase fraction affects the tensile strength and ductility of Inconel 706 alloy, while the non-compact γ'/γ'' co-precipitate structure in the matrix degrades the creep lifetime. These results indicate that re-heat treatment during the repair of operated components induces microstructural and mechanical properties changes. However, to investigate the detailed history of used Inconel 706 components, additional research on the microstructural degradation during operation of Inconel components is required.