Cancer Medicine (Apr 2023)

Application of EfficientNet‐B0 and GRU‐based deep learning on classifying the colposcopy diagnosis of precancerous cervical lesions

  • Xiaoyue Chen,
  • Xiaowen Pu,
  • Zhirou Chen,
  • Lanzhen Li,
  • Kong‐Nan Zhao,
  • Haichun Liu,
  • Haiyan Zhu

DOI
https://doi.org/10.1002/cam4.5581
Journal volume & issue
Vol. 12, no. 7
pp. 8690 – 8699

Abstract

Read online

Abstract Background Colposcopy is indispensable for the diagnosis of cervical lesions. However, its diagnosis accuracy for high‐grade squamous intraepithelial lesion (HSIL) is at about 50%, and the accuracy is largely dependent on the skill and experience of colposcopists. The advancement in computational power made it possible for the application of artificial intelligence (AI) to clinical problems. Here, we explored the feasibility and accuracy of the application of AI on precancerous and cancerous cervical colposcopic image recognition and classification. Methods The images were collected from 6002 colposcopy examinations of normal control, low‐grade squamous intraepithelial lesion (LSIL), and HSIL. For each patient, the original, Schiller test, and acetic‐acid images were all collected. We built a new neural network classification model based on the hybrid algorithm. EfficientNet‐b0 was used as the backbone network for the image feature extraction, and GRU(Gate Recurrent Unit)was applied for feature fusion of the three modes examinations (original, acetic acid, and Schiller test). Results The connected network classifier achieved an accuracy of 90.61% in distinguishing HSIL from normal and LSIL. Furthermore, the model was applied to “Trichotomy”, which reached an accuracy of 91.18% in distinguishing the HSIL, LSIL and normal control at the same time. Conclusion Our results revealed that as shown by the high accuracy of AI in the classification of colposcopic images, AI exhibited great potential to be an effective tool for the accurate diagnosis of cervical disease and for early therapeutic intervention in cervical precancer.

Keywords