Fractal and Fractional (May 2025)
Strong Convergence of a Modified Euler—Maruyama Method for Mixed Stochastic Fractional Integro—Differential Equations with Local Lipschitz Coefficients
Abstract
This paper presents a modified Euler—Maruyama (EM) method for mixed stochastic fractional integro—differential equations (mSFIEs) with Caputo—type fractional derivatives whose coefficients satisfy local Lipschitz and linear growth conditions. First, we transform the mSFIEs into an equivalent mixed stochastic Volterra integral equations (mSVIEs) using a fractional calculus technique. Then, we establish the well—posedness of the analytical solutions of the mSVIEs. After that, a modified EM scheme is formulated to approximate the numerical solutions of the mSVIEs, and its strong convergence is proven based on local Lipschitz and linear growth conditions. Furthermore, we derive the modified EM scheme under the same conditions in the L2 sense, which is consistent with the strong convergence result of the corresponding EM scheme. Notably, the strong convergence order under local Lipschitz conditions is inherently lower than the corresponding order under global Lipschitz conditions. Finally, numerical experiments are presented to demonstrate that our approach not only circumvents the restrictive integrability conditions imposed by singular kernels, but also achieves a rigorous convergence order in the L2 sense.
Keywords