Developmental Cognitive Neuroscience (Oct 2024)

Identifying developmental changes in functional brain connectivity associated with cognitive functioning in children and adolescents with ADHD

  • Brian Pho,
  • Ryan Andrew Stevenson,
  • Sara Saljoughi,
  • Yalda Mohsenzadeh,
  • Bobby Stojanoski

Journal volume & issue
Vol. 69
p. 101439

Abstract

Read online

Youth diagnosed with Attention-Deficit/Hyperactivity Disorder (ADHD) often show deficits in various measures of higher-level cognition, such as, executive functioning. Poorer cognitive functioning in children with ADHD has been associated with differences in functional connectivity across the brain. However, little is known about the developmental changes to the brain’s functional properties linked to different cognitive abilities in this cohort. To characterize these changes, we analyzed fMRI data (ADHD = 373, NT = 106) collected while youth between the ages of 6 and 16 watched a short movie-clip. We applied machine learning models to identify patterns of network connectivity in response to movie-watching that differentially predict cognitive abilities in our cohort. Using out-of-sample cross validation, our models successfully predicted IQ, visual spatial, verbal comprehension, and fluid reasoning in children (ages 6 – 11), but not in adolescents with ADHD (ages 12–16). Connections with the default mode, memory retrieval, and dorsal attention were driving prediction during early and middle childhood, but connections with the somatomotor, cingulo-opercular, and frontoparietal networks were more important in middle childhood. This work demonstrated that machine learning approaches can identify distinct functional connectivity profiles associated with cognitive abilities at different developmental stages in children and adolescents with ADHD.

Keywords